Structured Doubling Algorithms for Weak Hermitian Solutions of Algebraic Riccati Equations

نویسنده

  • TSUNG-MIN HWANG
چکیده

In this paper, we propose structured doubling algorithms for the computation of weak Hermitian solutions of continuous/discrete-time algebraic Riccati equations. Under the assumptions that partial multiplicities of purely imaginary and unimodular eigenvalues (if any) of the associated Hamiltonian and symplectic pencil, respectively, are all even, we prove that the developed structured doubling algorithms converge to the desired Hermitian solutions globally and linearly. Numerical experiments show that structured doubling algorithms perform efficiently and reliably.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured doubling algorithms for weakly stabilizing Hermitian solutions of algebraic Riccati equations

In this paper, we propose structured doubling algorithms for the computation of the weakly stabilizing Hermitian solutions of the continuousand discrete-time algebraic Riccati equations, respectively. Assume that the partial multiplicities of purely imaginary and unimodular eigenvalues (if any) of the associated Hamiltonian and symplectic pencil, respectively, are all even and the C/DARE and th...

متن کامل

Structure-preserving algorithms for Hermitian solutions of algebraic Riccati equations

In this paper, we propose structure-preserving algorithms for the computation of Hermitian solutions of continuous/discrete-time algebraic Riccati equations. Under assumptions that partial multiplicities of purely imaging and unimodular eigenvalues (if any) of the associated Hamiltonian and symplectic pencil, respectively, are all even, we prove that the developed structure-preserving algorithm...

متن کامل

Transformations Between Discrete-time and Continuous-time Algebraic Riccati Equations

We introduce a transformation between the discrete-time and continuoustime algebraic Riccati equations. We show that under mild conditions the two algebraic Riccati equations can be transformed from one to another, and both algebraic Riccati equations share common Hermitian solutions. The transformation also sets up the relations about the properties, commonly in system and control setting, tha...

متن کامل

A Structured Doubling Algorithm for Discrete-time Algebraic Riccati Equations with Singular Control Weighting Matrices

In this paper we propose a structured doubling algorithm for solving discrete-time algebraic Riccati equations without the invertibility of control weighting matrices. In addition, we prove that the convergence of the SDA algorithm is linear with ratio less than 1 2 when all unimodular eigenvalues of the closed-loop matrix are semisimple. Numerical examples are shown to illustrate the feasibili...

متن کامل

Performance enhancement of doubling algorithms for a class of complex nonsymmetric algebraic Riccati equations

A new class of complex nonsymmetric algebraic Riccati equations has been studied by Liu & Xue (2012, SIAM J. Matrix Anal. Appl., 33, 569–596), which is related to the M-matrix algebraic Riccati equations. Doubling algorithms, with properly chosen parameters, are used there for equations in this new class. It is pointed out that the number of iterations for the doubling algorithms may be relativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006